船舶百科 >>所属分类 >> 上游资源  

液化天然气

标签: 液化天然气 LNG

目录

[显示全部]

简介

       液化天然气(Liquefied Natural Gas ,简称LNG)被公认是地球 上最干净的能源,其制造过程是先将气田生产之天然气净化化处理,经一连串超低温液化后,重量仅为同体积水的45%左右。燃烧后对空气污染非常小,而且放出热量大,所以液化天然气好。

       液化天然气是天然气经压缩、冷却至其沸点(-161.5摄氏度)温度后变成液体,通常液化天然气储存在-161.5摄氏度、0.1MPa左右的低温储存罐内。其主要成分为甲烷,用专用船或油罐车运输,使用时重新气化。20世纪70年代以来,世界液化天然气产量和贸易量迅速增加,2005年LNG国际贸易量达1888.1亿立方米,最大出口国是印度尼西亚,出口314.6亿立方米;最大进口国是日本763.2亿立方米。

特点

       安全:

       由于LNG之主要成份是甲烷,气化后比空气轻,万一洩漏时,很容易扩散至大气中,不致有爆炸的危险,是一种安全的能源。

       干净:

       LNG在液化过程中,已将硫、二氧化碳、水份等除去,因此,燃烧时,不会因硫份而造成空气污染,是一种干净清洁的能源。

       高效率:

       天然气具有很高的热值(约10000Kcal/M3)。液化后的体积缩小为1/600,便于储存与运输,又可利用海水很简单地将之气化,是极为方便,高效率的能源。

成份组成

甲烷甲烷

       甲烷(CH4)90%以上,其它成份为乙、丙烷。

       甲烷

       分子量:16.04

       分子容:22.36

       溶点℃(1atm):-182.6

       沸点℃(1atm):-161.4

       液体比重(60/60℉):0.300

       气体比重(空气=1):0.555

       蒸发潜热 kcal/kg:121.9

       空气混合 上限%:5.3

       爆发限界 下限%: 13.9

       总发热量 kcal/Nm3:9,520

乙烷乙烷       

    乙烷

     分子量:30.07

     分子容:22.16

     溶点℃(1atm):-172.0

     沸点℃(1atm):-88.6

       液体比重(60/60℉):0.378

       气体比重(空气=1):1.049

       蒸发潜热 kcal/kg:116.9

       空气混合 上限%:3.12

       爆发限界 下限%: 15.0

       总发热量 kcal/Nm3:16,820

       蒸气压 kg/cm2(37.7℃):54.8

       分子量:44.09

丙烷丙烷     

    丙烷

    分子容:21.82

    溶点℃(1atm):-187.1

    沸点℃(1atm):-42.2

    液体比重(60/60℉):0.512

       气体比重(空气=1):1.522

       蒸发潜热 kcal/kg:101.8

       空气混合 上限%:2.37

       爆发限界 下限%: 9.50

       总发热量 kcal/Nm3:24,320

       蒸气压 kg/cm2(37.7℃):13.4

储存

地下地下
地上地上

       一般以冷冻储槽储存之,通常低压储存(约0.2 kg/cm2)。

       世界上最大储槽容量为200,000M3,储存约可分为三种:

       地下 :外层为RC,内层为不锈钢。

       地上 :外层为RC或低温钢材,内层为不锈钢。 

半地下半地下

       半地下 :外层为RC或低温钢材,内层为不锈钢。

LNG 的安全特性 

       ① 基本物性

        LNG气相相对密度为0.6~0.7;液相密度为430~460kg/m3;气态体积是液态体积的600多倍;临界温度为190K左右,常温下不能靠加压液化而只能采用低温工艺将其液化。

       ② 燃烧

       着火温度:LNG的着火温度约为538℃,高于丙烷(493℃)、柴油(252℃)、汽油(257℃)、甲醇(464℃)。

       最小点火能量与燃烧速度:LNG的最小点火能量约为0.285mJ,低于汽油与柴油;燃烧速度也较慢,只有0.3m/s。

       爆炸极限:LNG在空气中的爆炸极限约为5%~15%,范围较窄,危险性相对小一些。

      扩散性:气相LNG常温条件下密度小,扩散系数较大,具有很强的扩散性。这表明,一方面,LNG泄漏后容易扩散,难以形成爆炸气体;但另一方面,一旦发生燃烧爆炸,火势蔓延速度则很快,燃烧面积和破坏程度也较大。因此,LNG泄漏后,力求避免燃烧爆炸是首要任务。

       ③ 低温

        LNG的最典型特征是低温,储存及运输环节中的LNG均呈低温特性。除了表现在对设备、管道材料的抗低温要求外,还要解决系统保冷、蒸发气处理等技术问题。防低温灼伤是运行人员必须具备的基本常识。

       ④ 泄漏

       防泄漏扩散及低温冻伤是安全利用LNG的两个关键问题。

       泄漏扩散包含液相泄漏与气相泄漏两种形式,涵盖LNG产业链的全部过程。无论哪个环节的任何形式的泄漏,都具有极大的危险性。LNG连续供应的特征,在一定程度上更易造成持续和大量的危险气体泄漏,造成更大范围的爆炸性气体空间,使事故的波及范围扩大。

       ⑤ 储存

        储存过程中应防止LNG分层与翻滚等现象的产生。此外,有效抑制储罐内LNG由液相向气相转换也是储存过程主要工作目标。

       ⑥ 压力输配

       气相LNG的输送一般都采用压力输送方式,输配管道运行压力大多在4.0MPa以上,具有典型的高压特征。防止泄漏是该环节最重要的任务。

LNG产业链 

LNG产业链流程LNG产业链流程
       LNG的主要组分是甲烷(CH4),气相体积分数一般在85%以上,还含有一定量的乙烷、丙烷及微量的氮气等组分。
       LNG产业链是一条资金庞大、技术密集的完整链系,产业链较长,主要包括上游开采与液化、中游运输与输配、下游储存、气化、利用等部分,涉及开采、集输、净化、液化、液相运输、储存、气化、管道输送、利用等多个环节。典型的LNG产业链流程见图。
      从图可以看出,为便于运输及节省运输费用,天然气一般在产地经过低温处理变成液体,然后借助于车船等运输工具将其运抵终端用户侧进行气化,再通过管道及输配设施输送给用户使用。其间,天然气经历了几次相变、几次温度剧变。这大大增加了LNG产业链上的安全管理难度,对LNG安全技术提出了较高的要求,对操作人员的操作技能要求也愈加严格。

LNG储存环节 

      储存是LNG产业链中安全技术问题最为突出的环节。不仅涉及LNG储罐等低温储存设施的性能及工艺流程的科学性,而且与操作人员技术水平、安全意识等息息相关。
      首先,工程设计、材料及设备的优选,特别是储罐的设计与建造是储存环节提高安全可靠性的第一步。其次,工艺流程的设计与优化,务必将安全性放在首位,并与操作的便利性、可靠性相融合,罐区布置等方面要竭力体现以人为本的理念。作为人的因素,对操作人员进行安全技术培训,提高业务素质,严格执行各项规章、操作规程等,都是至关重要的。训练出一个素质高、安全意识及责任心强、技术水平高的操作人员团队,储运环节的安全性就多了一份保障。
       在具体的安全技术方面,需要掌握LNG的如下特性。
      ① 液体分层
      不同来源的LNG存在组成、液体密度上的差异,不针对密度不同的LNG采取正确的进液方法,就有可能导致储罐内LNG因密度大小不一致而产生分层现象。另外,即使混合均匀的LNG,若N2含量较高,也会由于氮的常压沸点(-195.82℃)远低于甲烷的沸点(-161.5℃),其挥发性远大于甲烷,使得氮的蒸发量远大于甲烷,从而形成自由液面上的LNG中甲烷浓度增加,液体密度减小,与储罐中下部的LNG产生分层的现象。
       ② 老化
       多组分的LNG在储存过程中,因各组分的蒸发量差异导致液体的密度发生变化的过程称为老化。可见,组分越多、组分间蒸发速度差距越大的LNG,老化的速度越快;静态储存时间越长,老化的程度就越严重。
       ③ 翻滚
       翻滚现象发生时,蒸发率比正常情况增加250多倍,压力瞬间骤升,大量的蒸发气体很难立即通过安全阀得到释放。此时,储罐损坏则不可避免,导致大量的LNG外泄,后果不堪设想。
       尽管形成LNG翻滚的机理十分复杂,但分层、老化的发生是导致其产生的主要因素。因此,避免分层及老化是避免翻滚现象产生的有效对策。
      ④ 间歇泉和水锤现象
      如果储罐底部有较长的而且充满LNG的竖直管道,由于管内LNG受热,有可能产生气泡积聚,间歇性形成喷发,这称为间歇泉现象。另外,管道中有可能产生一种类似于水击现象的LNG液体冲击波,这称为水锤现象。上述两种情况下,均会产生很大的瞬间高压,有可能对管道中的垫圈和阀门造成损坏,应力求避免。

LNG运输环节 

       常见的LNG运输方式主要有水路运输和陆路运输两种方式,水运指的是船运,陆运则可分为汽车运输和火车运输两种类型,短距离运输则可以考虑采用管道方式。在国际贸易中,LNG船运量占80%以上。
      ① 船运
       LNG船运的安全技术类似于储存环节,但有其特殊性,主要是蒸发气(BOG)的回收处理问题。一般如果能够较好地解决BOG问题,则对船上储罐隔热要求可适当低一些,有利于降低船舶造价、增加货运量、提高航运经济性。目前,回收船上LNG蒸发气的技术方向,一是采用BOG再液化工艺,将BOG降温使之再成为液体回到储罐中去;另一个方向是船上动力采用天然气燃料,BOG直接用作船上驱动燃料。
      ② 车运
       车运分汽车槽车与火车槽车两种方式,尽管情况有些差异,但安全技术的重点相同,都是防泄漏扩散和BOG问题。对于汽车运输[7],避免超压、消除静电、防泄漏是安全方面应注意的主要问题。因蒸发量大而超压的情况在车运环节较少出现,也较好解决,放散是有效对策之一。防泄漏问题除了在设备的可靠性方面严格把关之外,驾驶员的安全意识、驾驶水平等特别关键。良好的接地是防静电产生的根本措施。对于火车运输,安全技术措施与汽车槽车相同,不同之处在于车辆编组导致路途时间不可控情况的避免。

LNG接收站与卫星站 

       影响接收站与卫星站安全运行的主要因素是泄漏引发的风险以及相继产生的火灾爆炸事故,危险源除与储存环节相同外,薄弱环节还包括以下两个方面:
       ① LNG的装卸操作,即原料的频繁进出。尽管流程并不复杂,但无数次的反复操作,容易使操作人员产生懈怠和疏忽情绪,在思想上麻痹大意,以致于麻木而丧失警惕,因而极易掉以轻心,出现安全事故。
       ② LNG的气化操作,涉及LNG相变过程,伴随着压力增加和温度的急剧升高,稍有不慎,就会留下隐患,应引起高度重视。
       此外,站内应设置完善的防雷击、防静电措施。

发展概况

       来由
       1941 年在美国克利夫兰建成了世界第一套工业规模的LNG装置,液化能力为 8500 m3 /d 。从 60 年代开始, LNG 工业得到了迅猛发展,规模越来越大,基本负荷型液化能力在 2. 5 × 104 m3 /d 。据资料[3]介绍,各国投产的 LNG 装置已达 160 多套, LNG 出口总量已超过 46.1 8 × 106 t/a 。
       中国发展
湄洲湾秀屿港“福建LNG”湄洲湾秀屿港“福建LNG”
      中国天然气贸易的发展,不但反映了世界天然气市场格局的变化,而且正在为世界天然气市场注入新的活力。
       2011年中国天然气产量首次突破1000亿立方米,达到1011.8亿立方米,同比增长6.4%。2012年前8个月产量累计达到697.7万吨,同比增长5.4%。天然气管道建设也如火如荼。2011年全国新增天然气长输管道里程超过5000公里,全国干、支线天然气管道总长度超过5万公里。2013年10月16日,西气东输三线工程在北京、新疆和福建三地同时开工,沿线经10个省区,总长度7378公里,设计年输气量300亿立方米。
       液化天然气则随着海上液化天然气进口量的不断增加以及陆上液化天然气液化工厂的建设,国内资源供应得到了保障。2011年我国进口液化天然气1221.5万吨(约合171亿立方米),约为上年进口量的1.3倍。我国海上液化天然气进口量今后将会逐年增加,2015年有望达到4000万吨,年均复合增长率超过30%。
       俄罗斯发展
       2013年11月22日俄罗斯国家杜马通过一项法律允许俄液化天然气出口自由化,这项法律将打破多年来液化天然气出口由俄罗斯天然气工业股份公司垄断的局面。
       上述法律自今年12月1日起生效。按照规定,俄罗斯将有两类能源公司获得液化天然气出口权。持有2013年1月1日前颁发的联邦矿产资源开采许可证,并被允许建立液化天然气工厂,或将开采出的天然气用于生产天然气的公司。此外,拥有包括黑海和亚速海在内的内海、领海及大陆架矿产资源开采权,并将开采出的天然气或按产品分成协议获得的天然气进行液化,国有资本超过50%的公司。
       根据该法,俄工业贸易部将颁发液化天然气许可证的权力转交给能源部。天然气出口商将向俄能源部提供按俄政府规定的程序出口天然气的信息,此举是为了协调液化天然气出口,避免在俄出口商之间形成竞争。
       俄政府希望,液化天然气出口自由化将有助于提高俄在世界天然气市场的份额,保持天然气价格稳定。
       2013年前10个月,俄天然气出口量为1633.53亿立方米,其中远距离出口量同比增长17.7%,为1098.71亿立方米;近距离出口量同比下降16%,为416.63亿立方米。此外,前10个月出口至亚太地区的液化天然气同比略降1.6%,为118.15亿立方米。

研究现状

国外研究现状
       现在世界能源生产总量中,天然气已占到1/3,并有可能在不远的将来逐步将现时广受欢迎的石油和煤炭挤到次要地位。2020年前,天然气在世界能源需求中的比例将会达到45%-50%。目前,世界天然气年需求量超过2.5×10m,进入国际贸易的为(6250-6500)×l0m,而其中以LNG方式出售的约占33%。据第20届世界天然气大会和相关资料预测,2030年前,世界天然气的潜在需求将增加到4×10m,液化天然气历来是一种细分市场产品。它的消耗量正以每年10%的速度增长,全球液化天然气需求将从2010年的2.18亿吨增至2015年的3.1亿吨,到2020年可达到4.1亿吨。2011年上半年,液化天然气需求同比增长8.5%,全年增长12%,主要是受来自于日本、英国和印度新增需求,以及韩国传统买家需求增长的刺激。预计到2015年,我国天然气供应结构为国产气1700亿立方米,净进口900亿立方米,天然气消费量将达到2600亿立方米,占一次能源消费中的比重则将从目前的4%上升至7%至8%。2011年中国天然气的消费量为1313亿立方米,届时天然气占一次性能源的消费比例可能将提升至10%至15%。
       近年来,随着世界天然气产业的迅猛发展,LNG已成为国际天然气贸易的重要部分。与十年前相比,世界LNG贸易量增长了一倍,出现强劲的增长势头。据预测,2012年国际市场上LNG的贸易量将占到天然气总贸易量的36%,到2020年将达到天然气贸易量的40%,占天然气消费量的15%。
       国外的液化装置规模大、工艺复杂、设备多、投资高,基本都采用阶式制冷和混合冷剂制冷工艺,目两种类型的装置都在运行,新投产设计的主要是混合冷剂制冷工艺,研究的主要目的在于降低液化能耗。制冷工艺从阶式制冷改进到混合冷剂制冷循环,目前有报道又有 C Ⅱ -2 新工艺,该工艺既具有纯组分循环的优点,如简单、无相分离和易于控制,又有混合冷剂制冷循环的优点,如天然气和制冷剂制冷温位配合较好、功效高、设备少等优点。
       法国Axens 公司与法国石油研究所 (IFP) 合作,共同开发的一种先进的天然气液化新工艺—— Liquefin 首次工业化,该工艺为 LNG 市场奠定了基础。其生产能力较通用的方法高 15%-20% ,生产成本低 25% 。使用 Liquefin 法之后,每单元液化装置产量可达 600 × 104 t/y 以上。采用 Liquefin 工艺生产 LNG 的费用每吨可降低 25% 。该工艺的主要优点是使用了翅片式换热器和热力学优化后的工艺,可建设超大容量的液化装置。 Axens 已经给美国、欧洲、亚洲等几个主要地区提出使用该工艺的建议,并正在进行前期设计和可行性研究。 IFP 和 Axens 开发的 Liquefin 工艺的安全、环保、实用及创新特点最近已被世界认可,该工艺获得了化学工程师学会授予的“工程优秀奖”  。
       美国德克萨斯大学工程实验站,开发了一种新型天然气液化的技术—— GTL 技术已申请专利。该技术比目前开发的 GTL 技术更适用于小规模装置,可加工 30.5 × 104 m3 /d 的天然气。该实验站的 GTL 已许可给合成燃料(Synfuels) 公司。该公司在 A & M 大学校园附近建立了一套 GTL 中试装置,目前正在进行经济性模拟分析。新工艺比现有技术简单的多,不需要合成气,除了发电之外,也不需要使用氧气。其经济性、规模和生产方面都不同于普通的费托 GTL 工艺。第一套工业装置可能在 2004 年上半年建成。
国内研究现状
中国LNG卫星站分布中国LNG卫星站分布
       中国LNG接收站分布
       早在20世纪 60 年代,国家科委就制订了 LNG 发展规划, 60 年代中期完成了工业性试验,四川石油管理局威远化工厂拥有国内最早的天然气深冷分离及液化的工业生产装置,除生产 He 外,还生产 LNG 。 1991 年该厂为航天部提供 30tLNG 作为火箭试验燃料。与国外情况不同的是,国内天然气液化的研究都是以小型液化工艺为目标,有关这方面的文献发表较多,以下就国内现有的天然气液化装置工艺作简单介绍。
2011年,我国液化天然气行业市场销售CRN值约为80%,其中中石油、中石化、中海油三大国企的比重达到近六成,销售地区主要集中在天津、山东、广东、新疆、陕西等地。在LNG进口方面,截至2011年底,中国共投运LNG接收站5座,接收能力合计达1580万吨/年;到2014年全部建成后,中国LNG接收能力将达3380万吨/年。
       天然气地质资源量估计超过38万亿立方米,可采储量前景看好,按国际通用口径,预计可采储量7-10万亿立方米,可采95年,在世界上属资源比较丰富的国家。陆上资源主要集中在四川盆地、陕甘宁地区、塔里木盆地和青海,海上资源集中在南海和东海。此外,在渤海、华北等地区还有部分资源可利用。由于资源勘探后,未能有效利用,以及政策不配套,造成用气结构不合理,都在一定程度上制约了我国天然气工业的健康发展。但是,随着我国的社会进步和经济发展,天然气成为主要能源将是一个必然的趋势。
       四川液化天然气装置
       由中国科学院北京科阳气体液化技术联合公司与四川简阳市科阳低温设备公司合作研制的 300l/h 天然气液化装置,是用 LNG 作为工业和民用气调峰和以气代油的示范工程。该装置于 1992 年建成,为 LNG汽车研究提供 LNG 。
       该装置充分利用天然气自身的压力,采用气体透平膨胀机制冷使天然气液化,用于民用天然气调峰或生产 LNG ,工艺流程合理,采用气体透平膨胀机,技术较先进。该装置基本不消耗水、电,属节能工程,但液化率很低,约 10% 左右,这是与它的设计原则一致的。
       吉林油田液化天然气装置
       由吉林油田、中国石油天然气总公司和中科院低温中心联合开发研制的 500l/h 撬装式工业试验装置于 1996 年 12 月整体试车成功,该装置采用以氮气为冷剂的膨胀机循环工艺,整个装置由 10 个撬块组成,全部设备国产化 。
       该装置采用气体轴承透平膨胀机;国产分子筛深度脱除天然气中的水和 CO2 ,工艺流程简单,采用撬装结构,符合小型装置的特点。采用纯氮作为制冷工质,功耗比采用冷剂的膨胀机循环要高。没有充分利用天然气自身压力,将天然气在中压下( 5.0MPa 左右)液化(较高压力下液化既可提高氮气的制冷温度,又可减少制冷负荷),因此该装置功耗大。
       陕北气田液化天然气
       1999 年 1 月建成投运的 2 × 104 m3 /d “陕北气田 LNG 示范工程”是发展我国 LNG 工业的先导工程,也是我国第一座小型 LNG 工业化装置。该装置采用天然气膨胀制冷循环,低温甲醇洗和分子筛干燥联合进行原料气净化,气波制冷机和透平膨胀机联合进行低温制冷,燃气机作为循环压缩机的动力源,利用燃气发动机的尾气作为加热分子筛再生气的热源。该装置设备全部国产化。装置的成功投运为我国在边远油气田上利用天然气生产 LNG 提供了经验。
       中原油田液化天然气装置
       中原油田曾经建设了我国最大的 LNG 装置,原料气规模为 26.6 5 × 104 m3 /d 、液化能力为 1 0 × 104 m3 /d 、储存能力为 1200 m3 、液化率为 37.5%。目前,在充分吸取国外先进工艺技术的基础上,结合国内、国外有关设备的情况,主要针对自身气源特点,又研究出 LNG 工艺技术方案。该工艺流程采用常用的分子筛吸附法脱水,液化工艺选用丙烷预冷 +乙烯预冷 + 节流。
       装置在原料气量 30× 104 m3 /d 时,收率高达 51.4% ,能耗为 0.13 Kwh/Nm3 。其优点在于各制冷系统相对独立,可靠性、灵活性好。但是工艺相对较复杂,须两种制冷介质和循环,设备投资高。由于该厂充分利用了油田气井天然气的压力能,所以液化成本低。
       天津大学的小型液化天然气装置
       小型 LNG 装置与大型装置相比,不仅具有原料优势、市场优势而且投资低、可搬迁、灵活性大。 LNG 装置主要是用胺基溶剂系统对天然气进行预处理,脱除 CO2 等杂质;分子筛脱水;液化几个步骤。装置采用单级混合制冷系统;闭合环路制冷循环用压缩机压缩制冷剂。单级混合制冷剂工艺操作简便、效率高,适用于小型 LNG 装置。
       压缩机的驱动机可用燃气轮机或电动马达。电价低的地区可优先考虑电动马达(成本低、维修简单)。在燃料气价格低的地区,燃气透平将是更好的选择方案。经济评估结果表明,采用燃气轮机驱动机的液化装置,投资费要比选用电动马达高出 200 万~ 400 万美元。据对一套 15 × 106ft 3 /d 液化装置进行的成本估算,调峰用的 LNG 项目储罐容积为 10 万 m3 ,而用于车用燃料的 LNG 项目仅需 700m3 储罐,导致最终调峰用的 LNG 成本为 2.03 ~ 2.11 美元 /1000ft3 ,而车用 LNG 成本仅 0.98 ~ 0.99 美元 /1000 ft3 。
       西南石油大学液化新工艺
       该工艺日处理 3.0 × 104 m3 天然气,主要由原料气 ( CH4 : 95.28% , CO2 :2.9% ) 脱 CO2 、脱水、丙烷预冷、气波制冷机制冷和循环压缩等系统组成。 以 SRK 状态方程作为基础模型,开发了天然气液化工艺软件。 天然气压缩机的动力采用天然气发动机,小负荷电设备用天然气发电机组供电,解决了边远地区无电或电力紧张的难题。由于边远地区无集输管线可利用,将未能液化的天然气循环压缩,以提高整套装置的天然气液化率。
       装置采用一乙醇胺法( MK-4 )脱除 CO2 。由于处理量小,脱二氧化碳的吸收塔和再生塔应采用高效填料塔。由于混合制冷剂,国内没有成熟的技术和设计、运行管理经验,仪表控制系统较复杂。同时考虑到原料气中甲烷含量高,有压力能可以利用。故采用天然气直接膨胀制冷作为天然气液化循环工艺。气波制冷属于等熵膨胀过程,气波制冷机是在热分离机的基础上,运用气体波运动的理论研制的。在结构上吸收了热分离机的一些优点,同时增加了微波吸收腔这一关键装置,在原理上与热分离机存在明显不同,更加有效地利用气体的压力,提高了制冷效率。
       哈尔滨燃气工程设计研究院与哈尔滨工业大学
       LNG 系统主要包括天然气预处理、天然气的低温液化、天然气的低温储存及天然气的气化和输出等。经过处理的天然气通过一个多级单混冷凝过程被液化,制冷压缩机是由天然气发动机驱动。 LNG 储罐为一个双金属壁的绝热罐,内罐和外罐分别是由镍钢和碳钢制成  。
       循环气体压缩机一般采用天然气驱动,可节省运行费用而使投资快速收回。压缩机一般采用非润滑式特殊设计,以避免天然气被润滑油污染。采用装有电子速度控制系统的透平,而且新型透平的最后几级叶片用钻合金制造,改善了机械运转。安装于透平压缩机上的新型离合器是挠性的,它们的可靠性比较高,还可以调整间隙。

应用领域

       在生态环境污染日益严重的形势面前,为了优化能源消费结构,改善大气环境,实现可持续发展的经济发展战略,人们选择了天然气这种清洁、高效的生态型优质能源和燃料。现在,无论是工业还是民用,都对天然气产生了越来越大的依赖性。液化天然气(LNG) 是天然气的液态形式,在某些情况下,选择液化天然气比选择气态天然气具有更多的优点。LNG的应用实际上就是天然气的应用,但由于其特性,LNG又比天然气有着更广泛的用途。
       世界上环保先进国家都在推广使用LNG.除了用作发电厂、工厂、家庭用户的燃料外,其中所含的甲烷可用作制造肥料、甲醇溶剂及合成醋酸等化工原料;另外其所含的乙烷和丙烷可经裂解而生成乙烯及丙烯,是塑料产品的重要原料.
       此外,超低温的LNG在大气压力下转变为常温气态的过程中,可提供大量的冷能,将这些冷能回收,还可以利用于6种低温用途上:使空气分离而制造液态氧、液态氮,液化二氧化碳、干冰制造,利用冷能进行发电,制造冷冻食品或使用于冷冻仓库,橡胶、塑料、铁屑等产业废弃物的低温破碎处理,海水淡化.
       工业用LNG
       1、发电
       LNG使用高效,经济,在发电中,天然气的热能利用率可达55%,高于燃油和煤,尤其是对调峰电厂而言,天然气取代燃油的优势非常明显。用于发电是目前LNG的最主要工业用途。
       日本一直是世界上LNG进口最多的国家,其LNG进口量的75 %以上用于发电,用作城市煤气的占20 %~23 %。韩国也是LNG 进口大国,其电力工业是韩国天然气公司( Kogas) 的最大用户,所消费的LNG占该国LNG进口总量的一半以上。
世界上已建有不少以天然气或液化天然气为燃料的燃气蒸汽联合循环电站。1999 年到2020 年期间,美国计划新增发电量中约有90%是天然气发电,届时,美国天然气发电量的比重将达到33 %。20 世纪80 年代兴起的联合循环电站,发电量以燃气轮机为主(约占总电量的2/ 3),电站纯效率已达50 %以上,而常规的燃煤蒸汽轮机电站效率只有30 %~35 %。燃气轮机电站和联合循环电站不仅效率高,而且机动性好,从机组起动到满负荷运行时间短,既可作基本负荷运行,也能作调峰运行。此外,联合循环电站污染小、可靠性高。
目前,我国“西气东输”等大型天然气输配工程已经全线贯通;广东液化天然气站线项目一期工程正式启动;建设总规模为500 万t/年、一期工程总投资超过220 亿元的福建LN G 项目也正式启动。这些项目的投产和启动为发展我国的天然气发电提供了必要的物质保障,必将对缓解我国能源供需矛盾、优化能源结构起到重要作用。
       2、陶瓷、玻璃等行业
       一些能源消耗很大的企业往往距城市或天然气管道很远,或者根本得不到管道输送的天然气,这种情况下LNG的优势更明显。最典型的是陶瓷厂,使用LNG可以使产品档次提高,成本下降。 用在玻璃、陶瓷制造业和石油化工及建材业(无碱玻璃布),可极大地提高产品的质量或降低成本,从而因燃料或原料的改变,而成为相关企业新的效益增长点。
       中小城镇生活用LNG
       近年来,随着居民生活水平的提高,中小城镇居民更希望能用洁净的能源, LNG作为清洁能源现备受关注,天然气燃烧后产生的二氧化碳和氮氧化合物仅为煤的50%和20%,污染为液化石油气的1/4,煤的1/800。由于管道铺投资设费用大,LNG气化站具有比管道气更好的经济性,在中小城镇可采用LNG气化站作为气源供居民使用,此外还可用于商业,事业单位的生活以及用户的采暖等。
       LNG作为调峰的备用气源
       作为管道天然气的调峰气源,可对民用燃料系统进行调峰,保证城市安全、平稳供气。在美国、英国、德国、荷兰和法国等国家,将LNG 调峰型装置广泛用于天然气输配系统中,对民用和工业用气的波动性,特别是对冬季用气的急剧增加起调峰作用。我国在上海已建成并投入使用。
       车用LNG燃料
       LNG作为可持续发展清洁能源,具有明显的环境效益及社会效益,以LNG取代燃油后可以减少90%的二氧化硫排放和80%的氮氧化物排放,环境效益十分明显,是汽车的优质代用燃料。可以预见,城市在汽车燃料方面逐步用LNG或天然气代替燃油,近年来,它已被世界许多国家重视和推广。俄罗斯在将 LNG 用于汽车运输,铁路运输,水上运输和空中运输方面积累了许多经验。英国的运输公司大部分采用LNG为车用燃料。
       按照天然气的储存方式不同,天然气汽车大致分为CNGV(压缩天然气汽车),LNGV(液化天然气汽车),和ANGV(吸附天然气汽车),目前在国内大量使用的是CNG型汽车,正在推广的是LNGV型汽车,ANGV正处在研制阶段,随着LNG的大量普及,LNGV型汽车会逐步向重型车发展,并会部分取代小型CNG型汽车及公交车,现国内建成的LNG公交车示范站有新疆的乌鲁木齐市、北京市、长沙市,正在筹备建设的有北海市、湛江市等。目前全国已改装的CNG型汽车已达数万辆,但用LNG作为汽车燃料特别值得推广,在建造LNG加气站的同时兼顾CNG(压缩天然气)加气站,能满足目前及今后的需求。

预测分析

       液化天然气历来是一种细分市场产品。它的消费量目前正以每年10%的速度增长。
       由于欧洲和北美地区的天然气储量已接近或仅略高于生产峰值水平,加上天然气资源匮乏的亚洲国家的需求迅速上升,液化天然气的需求正经历着爆炸式增长。预计到2010年至2011年,液化天然气的行业规模将比2004年增长一倍。
       面对繁荣的行业前景,全球范围内都在加大液化天然气的生产力度。过去几年中,计划沿美国海岸建设的再气化终端(将液化天然气转回气态)已超过50个。2002年底,全球有135艘液化天然气运输船舶,到2009年时将增加近2倍。
       但如果与全球大型能源企业的高管交谈,便会发现他们对液化天然气市场未来最担忧的问题――供应。在拟议的美国项目中,预计只有6到8个能在2016年之前建成。去年,许多船舶都难以找到货源。PFC能源咨询公司预计,2012年的全球供应将比预测低28%。
       由于天然气企业受到生产延期和成本上升的困扰,供应一直存在问题。项目开发通常无法预测,因其特殊性质,液化天然气项目通常难以在基础设施薄弱的地区开展。此外,高涨的钢铁和水泥等基础建筑物资价格,已经推升了开发成本。这使得人们担忧,液化天然气可能失去其价格优势。此外,还存在一种风险,即供应不足将促使政策制定者寻求气变油或煤炭气化等其他选择。
       但分析人士表示,液化天然气短期内几乎没有替代品。目前有迹象显示,供应状况正在改善,而且变得更具灵活性。即使将生产延期因素考虑在内,预计全球液化天然气的产能到2010年也将增长50%。目前运输船舶的装运量已有所提高,表明生产正在赶上基础设施的建设步伐。
       未来供应的关键在于,随着卡塔尔供应的天然气越来越多,市场如何作出回应。仅卡塔尔在2010年之前增加的液化天然气产量,就将是目前美国使用量的5倍。
       PFC能源咨询公司的加布里埃尔·韦恩表示:“这些国家确实在改变液化天然气市场的规模。卡塔尔将成为监控这些市场需求的风向标。问题在于,供应大幅增加是将影响市场活力?还是美国和欧洲会支持这种水平的增长,同时仍为更长时期开发留出空间?





词条信息